skip to main content


Search for: All records

Creators/Authors contains: "Wright, Duncan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of7700410+720K, Vmagnitude of 10.51 mag and log(g) of3.9820.065+0.067. The brown dwarf has a mass of22.12.5+2.6MJ, a period of 4.034 days, an eccentricity of0.3410.059+0.054, and a radius of1.2200.071+0.082RJ. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models.

     
    more » « less
  2. ABSTRACT

    We present the confirmation of a hot super-Neptune with an exterior Neptune companion orbiting a bright (V  = 10.1 mag) F-dwarf identified by the Transiting Exoplanet Survey Satellite (TESS). The two planets, observed in sectors 45, 46, and 48 of the TESS extended mission, are $4.74_{-0.14}^{+0.16}$ and $3.86_{-0.16}^{+0.17}$ R⊕ with $5.4588385_{-0.0000072}^{+0.0000070}$ and $17.8999_{-0.0013}^{+0.0018}$ d orbital periods, respectively. We also obtained precise space-based photometric follow-up of the system with ESA’s CHaracterising ExOplanets Satellite to constrain the radius and ephemeris of TOI-5126 b. TOI-5126 b is located in the ‘hot Neptune Desert’ and is an ideal candidate for follow-up transmission spectroscopy due to its high-predicted equilibrium temperature (Teq = ${1442}_{-40}^{+46}$ K) implying a cloud-free atmosphere. TOI-5126 c is a warm Neptune (Teq = $971_{-27}^{+31}$ K) also suitable for follow-up. Tentative transit timing variations have also been identified in analysis, suggesting the presence of at least one additional planet, however this signal may be caused by spot-crossing events, necessitating further precise photometric follow-up to confirm these signals.

     
    more » « less
  3. Abstract

    Stellar active regions, including spots and faculae, can create radial velocity (RV) signals that interfere with the detection and mass measurements of low-mass exoplanets. In doing so, these active regions affect each spectral line differently, but the origin of these differences is not fully understood. Here we explore how spectral line variability correlated with S-index (Ca H and K emission) is related to the atomic properties of each spectral line. Next, we develop a simple analytic stellar atmosphere model that can account for the largest sources of line variability with S-index. Then, we apply this model to HARPS spectra ofαCen B to explain Feiline depth changes in terms of a disk-averaged temperature difference between active and quiet regions on the visible hemisphere of the star. This work helps establish a physical basis for understanding how stellar activity manifests differently in each spectral line and may help future work mitigating the impact of stellar activity on exoplanet RV surveys.

     
    more » « less
  4. Abstract

    We report the discovery and confirmation of the Transiting Exoplanet Survey Satellite (TESS) single-transit, warm and dense sub-Saturn, TIC 139270665 b. This planet is unusually dense for its size: with a bulk density of 2.13 g cm−3(0.645RJ, 0.463MJ), it is the densest warm sub-Saturn of the TESS family. It orbits a metal-rich G2 star. We also found evidence of a second planet, TIC 139270665 c, with a longer period of1010220+780days and minimum massMPsiniof4.890.37+0.66MJ. First clues of TIC 139270665 b’s existence were found by citizen scientists inspecting TESS photometric data from sector 47 in 2022 January. Radial velocity measurements from the Automated Planet Finder combined with TESS photometry and spectral energy distributions viaEXOFASTv2system modeling suggested a23.6240.031+0.030day orbital period for TIC 139270665 b and also showed evidence for the second planet. Based on this estimated period, we mobilized the Unistellar citizen science network for photometric follow-up, capitalizing on their global distribution to capture a second transit of TIC 139270665 b. This citizen science effort also served as a test bed for an education initiative that integrates young students into modern astrophysics data collection. The Unistellar photometry did not definitively detect a second transit, but did enable us to further constrain the planet’s period. As a transiting, warm, and dense sub-Saturn, TIC 139270665 b represents an interesting laboratory for further study to enhance our models of planetary formation and evolution.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3 $\, M_{\rm \oplus}$), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15 $\, \mathrm{ R}_{\rm \oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $\rm {M_{sun}}$, R* = 1.888 ± 0.033 $\rm {R_{sun}}$, Teff = 6075 ± 90 $\rm {K}$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)